Semidefinite Programming and Approximation Algorithms: A Survey
نویسنده
چکیده
Computing approximately optimal solutions is an attractive way to cope with NP-hard optimization problems. In the past decade or so, semidefinite programming or SDP (a form of convex optimization that generalizes linear programming) has emerged as a powerful tool for designing such algorithms, and the last few years have seen a profusion of results (worst-case algorithms, average case algorithms, impossibility results, etc). This talk will be a survey of this area and these recent results. We will survey three generations of SDP-based algorithms. Each generation involves new modes of analysis, which have also led to new results in mathematics. At the end we will touch upon work that draws upon the so-called Matrix Multiplicative weight method, which greatly improves the running time of SDP-based algorithms, making them potentially quite practical. These algorithms have also found surprising application in Quantum computing, especially the recent result QIP=PSPACE. The survey will be essentially self-contained.
منابع مشابه
Interior Point and Semidefinite Approaches in Combinatorial Optimization
Conic programming, especially semidefinite programming (SDP), has been regarded as linear programming for the 21st century. This tremendous excitement was spurred in part by a variety of applications of SDP in integer programming (IP) and combinatorial optimization, and the development of efficient primal-dual interior-point methods (IPMs) and various first order approaches for the solution of ...
متن کاملApproximation algorithms via randomized rounding: a survey
Approximation algorithms provide a natural way to approach computationally hard problems. There are currently many known paradigms in this area, including greedy algorithms, primal-dual methods, methods based on mathematical programming (linear and semidefinite programming in particular), local improvement, and “low distortion” embeddings of general metric spaces into special families of metric...
متن کاملA path-following infeasible interior-point algorithm for semidefinite programming
We present a new algorithm obtained by changing the search directions in the algorithm given in [8]. This algorithm is based on a new technique for finding the search direction and the strategy of the central path. At each iteration, we use only the full Nesterov-Todd (NT)step. Moreover, we obtain the currently best known iteration bound for the infeasible interior-point algorithms with full NT...
متن کاملLec . 2 : Approximation Algorithms for NP - hard Problems ( Part II )
We will continue the survey of approximation algorithms in this lecture. First, we will discuss a (1+ε)-approximation algorithm for Knapsack in time poly(n, 1/ε). We will then see applications of some heavy hammers such as linear programming (LP) and semi-definite programming (SDP) towards approximation algorithms. More specifically, we will see LPbased approximation for MAXSAT and MAXCUT. In t...
متن کاملAdvanced Algorithm Design: Semidefinite Programming (SDP)
In the last few lectures, we considered constant-factor approximation algorithms that relied on linear programming and greedy algorithms. In this lecture, we will analyze algorithms that use a more powerful mathematical programming technique called semidefinite programming. We will illustrate the power of semidefinite programming by looking at the maximum cut problem. However, SDPs are useful f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010